Reconfiguration of Production in CSTR Networks: Flexibility of Heterogeneous Setups

Sukanya Balasubramanian, Eric Tatara, İnanç Birol, Fouad Teymour, and Ali Çinar

Center for Complex Systems and Dynamics
Department of Chemical and Environmental Engineering
Illinois Institute of Technology

AIChe Annual Meeting, Austin, TX, November 7-12, 2004
Introduction

- Coupled CSTRs
 Locked mode operation
2D Reactor Network

Cubic autocatalysis

\[R + 2P_n^{k_n} \rightarrow 3P_n \]

\[P_n^{d_n} \rightarrow D \]
2D Reactor Network

Cubic autocatalysis

\[R + 2P_n \xrightarrow{k_n} 3P_n \]

\[P_n \xrightarrow{d_n} D \]

\[
\frac{dr_{ij}}{dt} = -\sum_{n=1}^{N} k_n r_{ij} p_{ijn}^2 + f(1 - r_{ij}) + g\left(r_{i-1,j} + r_{i+1,j} + r_{i,j-1} + r_{i,j+1} - 4r_{ij}\right)
\]

\[
\frac{dp_{ijn}}{dt} = k_n r_{ij} p_{ijn}^2 - p_{ijn}(f + d_n) + g\left(p_{i-1,j,n} + p_{i+1,j,n} + p_{i,j-1,n} + p_{i,j+1,n} - 4p_{ijn}\right)
\]
Bifurcation Studies: Uniform feed dist*

2 CSTR

4 CSTR

locked

Tatara, et al 2002

Distribution of Feed Flow Rates

- Flow rates sampled from $N(f, \sigma)$
- Observe effect of σ

Degree of heterogeneity
Resource

$f = 0.002, \sigma = 0.001$
Net Avg Resource

\[f = 0.002, \sigma = 0.001 \]
Stable Regions

Emergence of stability

$f = 0.005, \sigma = 0$
Resource 0.001

\[f = 0.005, \sigma = \]

\[r \]

\[r \]

\[g \]
Net Avg Resource $f = 0.005, \sigma = 0.001$
Automated Continuation

1. Identify stable point p_0
2. Increment bifurcation parameter
3. Use p_0 as initial guess for p_1
4. Solve for p_1 (LLNL KINSOL)
5. Test stability of p_1
6. Repeat 1-5 until unstable
7. Reverse direction
Analysis of Stable Regions

\(\sigma = 0 \)

\(\sigma = 10^{-4} \)

\(\sigma = 10^{-3} \)
Analysis of Stable Regions, $\sigma = 10^{-4}$

$g = 0.0008$

$g = 0.0011$
Analysis of Stable Regions, $\sigma = 10^{-3}$
Analysis of Stable Regions, $\sigma = 10^{-3}$
Conclusions

Heterogeneous network configuration

- Suppression of locked mode
- Emergence of new stable points
 - Increased number of states
 - Increased range of stability wrt bifurcation parm

Network operability and flexibility

- Close proximity of states

Natural systems and evolutionary diversity
Contact

Prof. Ali Cinar cinar@iit.edu
Prof. Fouad Teymour teymour@iit.edu
Prof. Inanc Birol birol@iit.edu
Eric Tatara tataeri@iit.edu
Sukanya Balasubramanian balasuk@iit.edu

Center for Complex Systems and Dynamics
Department of Chemical & Environmental Engineering
Illinois Institute of Technology
10 W 33rd Street
Chicago, IL 60616
tel : (312) 567 3040
fax : (312) 567 8874

www.chee.iit.edu